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Abstract—The prototype of an apparatus for studying the X-ray f luorescence properties of nanomaterials for
X-ray photodynamic therapy is developed. The X-ray fluorescence characteristics of nanomaterials based on
gadolinium fluorides are studied. For a series of samples, X-ray f luorescence spectra are obtained in the
region of 600–700 nm, which allows the conclusion that such materials are promising for use as components
of radiosensitizers for X-ray photodynamic therapy. The data obtained are important for optimizing the char-
acteristics of nanomaterials and for further modification of the parameters of methods for synthesizing new
materials for X-ray photodynamic therapy.
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INTRODUCTION
Oncological diseases in terms of prevalence and

fatality rate occupy one of the leading places among
socially significant pathologies [1]. Many types of
oncological tumors are resistant to certain types of
anticancer therapy; therefore, the development of new
types of therapy is an extremely important task, espe-
cially for the development of approaches to personal-
ized medicine [2]. Photodynamic therapy (in the opti-
cal range of radiation) has recently become one of the
most important methods for treating a number of
oncological tumors close to the surface [2, 3]. How-
ever, the rather small effective depth of radiation pen-
etration into tissues significantly limits the list of types
of tumors amenable to treatment with photodynamic
therapy in the optical range [4]. Unlike radiation in the
optical range, higher-energy X-ray and gamma pho-
tons easily penetrate the deep tissues of the body [5].
However, at present, there are practically no biocom-
patible photosensitizers approved for medical use for
X-ray and gamma-range photodynamic therapy. X-
ray photodynamic therapy is a new field which is
promising for use as a treatment of deep tumors [7–
17]. The aim of this work is to study the X-ray f luores-
cence of nanomaterials for their possible use in X-ray
photodynamic therapy.

EXPERIMENTAL
To measure X-ray f luorescence, a setup was assem-

bled on the basis of a Phywe X-ray device (U = 35 kV,
I = 1 mA) for X-ray generation and an Agilent Cary
Eclipse f luorometer for the detection of X-ray f luores-

cence spectra. To block off radiation in the visible
range from the X-ray spectrum, a 20-μm-thick alumi-
num foil filter was used. Three different instrument
layouts were tested.

In configuration “A” (Fig. 1a), the sample under
study in the form of a compressed tablet was placed as
close as possible to the X-ray source. The position and
orientation of the sample were selected so that the
plane of the tablet was at an angle of 45° both to the
direction of propagation of X-rays and to the focusing
axis of the f luorimeter detector. An X-ray absorbing
glass is installed between the test sample and the f luo-
rometer. Due to the proximity of the sample to the
X-ray tube, the highest luminosity is achieved. A dis-
advantage is the protective glass, which absorbs ~15%
of the light in the visible region.

In configuration “B” (Fig. 1b), the sample under
study was also placed on the X-ray-propagation axis
on a specialized holder, printed using a 3D printer. In
contrast to configuration “A,” the sample under study
was located at a greater distance from the X-ray tube.
In this configuration, there is no X-ray absorbing
glass, which also attenuates the intensity of light trans-
mitted through it in the visible range. However, due to
the greater distance from the X-ray tube, the lumines-
cence intensity of the sample is significantly lower
than in case “A”. To reduce the effect of X-ray radia-
tion on the signal-to-noise ratio, a lead diaphragm was
installed in front of the sample.

Configuration “B” (Fig. 1c) is similar to the above
configuration. The difference is that the sample is
mounted closer to the f luorimeter-detector window
and the plane of the tablet is parallel to the plane of the
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detector window. With this measurement method, it
was expected that a better signal-to-noise ratio would
be obtained due to closer installation of the sample to
the intended focus of the f luorimeter. The disadvan-
tage is the increased intensity of X-ray radiation scat-
tered at the walls of the device, which, without protec-
tive glass, leads to deterioration in the signal-to-noise
ratio.

There are several classes of X-ray phosphors.
Nanoparticles doped with ions of the group of rare-
earth elements seem to be very promising. Such mate-
rials can absorb X-rays and emit quanta in the optical
range. A LiGa5O8:Cr-based nanoscintillator has been

proposed, which emits in the near infrared range [18].
This produces optical images of deep tissue that can be
used to control exposure. In particular, LiGa5O8:Cr
nanoparticles and a 2,3-naphthalocyanine photosen-
sitizer can be embedded in mesoporous silica
nanoparticles. Such nanoconjugates can efficiently
accumulate in lung tumors, as evidenced by monitor-
ing of the X-ray luminescence of LiGa5O8:Cr [18]. It
is also of interest to consider a number of compositions
doped with Gd3+ and Eu3+ ions of lanthanide f luo-
rides (e.g. NaGdF4:Eu3+), which make it possible to
optimize the radiation parameters under X-ray exci-
tation [19]. It was shown that an attempt to turn on the
Ce3+ ion in NaGdF4:Eu3+ led to a decrease in radia-
tion after X-ray excitation. The surface coating of
nanoparticles with a NaGdF4:Eu3+ gold shell reduced
the X-ray emission in half compared to uncoated
phosphors.

NaGdF 4:Ce3+, Eu3+–ST synthesis was carried out
using the solvothermal method: 0.8 mmol (210.9 mg)
of gadolinium(III) chloride, 0.8 mmol (347.3 mg) of
cerium(III) nitrate hexahydrate, and 0.8 mmol (206.6 mg)
of europium(III) chloride were dissolved in 4 mL of
distilled water. 1.6 mmol (412.9 mg) of sodium citrate
was separately dissolved in 8 mL of distilled water. The
solutions were decanted, and a white precipitate
immediately formed. The suspension was heated to a
temperature of 90°C and then a solution of 16 mmol
(672 mg) of sodium fluoride in 16 mL of distilled water
was added. The resulting dispersion was kept for 2 h at
a temperature of 90°C. Then the particles were washed
three times with distilled water by centrifugation and
dried at 60°C. The resulting sample is designated
NaGdF4:Ce, Eu. The dried sample was dispersed in
30 mL of distilled water and then placed in a Teflon
autoclave. Synthesis was carried out at 210°С for 1 h.
The resulting material was washed once again with
distilled water and dried at 60°C. The resulting sample
is designated NaGdF4:Ce, Eu–ST (solvothermal).

NaGdF4:Ce3+, Eu3+–MV synthesis was carried out
by the microwave method: 0.8 mmol (210.9 mg) of
gadolinium(III) chloride, 0.8 mmol (197.2 mg) of
cerium(III) chloride, and 0.8 mmol (206.6 mg) of
europium(III) chloride were dissolved in 4 mL of dis-
tilled water. 1.6 mmol (412.9 mg) of sodium citrate was
separately dissolved in 8 mL of distilled water. The
solutions were decanted, and a white precipitate
immediately formed. The suspension was heated to
90°C and then a solution of 16 mmol (672 mg) of
sodium fluoride in 16 mL of distilled water was added.
The resulting dispersion was kept for 2 h at a tempera-
ture of 90°C. The mixture was then transferred to a
Teflon cell and placed in a CEM Mars6 microwave
oven. The microwave synthesis conditions were: tem-
perature rise time of 20 min, holding time of 1 h, tem-
perature of 210°C, and a power of 600 W. The resulting
material was washed three times with distilled water

Fig. 1. Installation diagram: a—configuration “A”; b—
configuration “B”; c—configuration “C”. On the left is
the aperture of the X-ray instrument, on the right is a spe-
cialized sample holder and the f luorometer cuvette com-
partment.
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and dried at 60°C. The sample was designated
NaGdF4: Ce, Eu–MB (microwave).

RESULTS AND DISCUSSION

The average size of the synthesized nanoparticles
does not exceed 100 nm (Fig. 2). As seen from the
X-ray diffraction patterns, the synthesized NaGdF4
samples are a mixture of phases, the main one is the
hexagonal phase α-NaGdF4 (Fig. 3). The broadening
of the peaks is associated with the fine particle size.
The precipitate obtained at a temperature of 90°C cor-
responds to a single-phase product; however, upon
additional processing in an autoclave, a phase transi-
tion is observed. In the sample NaGdF4:Ce, Eu–MV, two
phases are identified: hexagonal α-NaGdF4 (from PDF
database #27-0699) and cubic β-Gd4F6O3 (#27-0697).

When measuring the X-ray f luorescence, a more
intense signal for a standard X-ray phosphor was
obtained in the case of configuration “A”. Therefore,
all measurements were performed using this configu-
ration. The distance of the sample from the X-ray
photon source and optical radiation detector, as well as
the low power of the source (U = 35 kV, I = 1 mA) were
a significant limitation in the measurements. Never-
theless, X-ray f luorescence spectra were successfully
recorded for a number of samples based on gadolin-
ium fluorides (Fig. 4).

When analyzing the X-ray f luorescence spectra,
the background spectrum (with a maximum at
660 nm) measured with the X-ray source turned off
was subtracted. The X-ray f luorescence spectra were
analyzed by averaging the signal over the points and
then fitting the peaks using the Gaussian function. It
was found that the X-ray f luorescence spectrum of the

Fig. 2. NaGdF4: Ce, Eu–MV images, obtained in a transmission electron microscope at different magnifications.
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Fig. 3. Diffraction patterns of the synthesized samples:
NaGdF4:Ce, Eu (1), NaGdF4:Ce, EuSТ (2),
NaGdF4:Ce, Eu–MV (3).
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Fig. 4. X-ray fluorescence spectra of the samples based on
gadolinium fluorides: 1—NaGdF4:Eu3+–ST, 2—
NaGdF4:Eu3+–МV.
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NaGdF4:Eu3+–ST sample has maxima at wavelengths
of 603 and 693 nm (Fig. 5).

The highest X-ray f luorescence yield was obtained
for the NaGdF4:Eu3+–МV sample. After fitting the
four peaks with a Gaussian function, it was found that
the f luorescence maxima are at the wavelengths 593,
618, 655, and 694 nm (Fig. 6). It should be noted that
the main contribution to the spectrum is made by
transitions 5D0 → 7FJ with Eu3+ emission at wave-
lengths of 587, 612, ~700 nm [6]. Apparently, due to
the low intensity of the X-ray source, the peaks at 587
and 612 nm could not be separated for the
NaGdF4:Eu3+–ST sample. The contributions of the
peaks at 593, 618, 655, and 694 nm for the
NaGdF4:Eu3+–MV sample were separated.

CONCLUSIONS

For a series of samples based on gadolinium fluo-
rides, X-ray f luorescence spectra were obtained in the
range of 600–700 nm, which suggests that such mate-
rials are promising for use as a component of radiosen-
sitizers for X-ray photodynamic therapy. The data
obtained are important for optimizing the characteris-
tics of nanomaterials and for further modifying the
parameters of methods for synthesizing new materials
for X-ray photodynamic therapy.
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Fig. 5. X-ray fluorescence spectrum of NaGdF4:Eu3+–ST material (a): points – experiment; solid line – experimental data aver-
aging. Fitting results using the Gaussian function (b): 1—averaging of experimental data; 2—contribution of the peak at 603 nm;
3—contribution of the peak at 693 nm; 4—fitting results.
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Fig. 6. X-ray fluorescence spectrum of NaGdF4:Eu3+–МV material (а): points – experiment; solid line – averaging of experi-
mental data. Fitting results using the Gaussian function (b): 1—averaging of experimental data; 2—contribution of the peak at
593 nm; 3—contribution of the peak at 618 nm; 4—contribution of the peak at 655 nm; 5—contribution of the peak at 694 nm;
6—fitting results.
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